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ABSTRACT

Robot grasping of deformable objects is an under-researched area. The difficulty

comes from both mechanics and computation. First, deformation caused by the grasp

operations changes object’s global geometry. Second, under deformation, an object’s

contacts with the fingers grow from points into areas. Inside such a contact area, points

that stick to the finger may later slide while points that slide may later stick. The torques

exerted by the grasping fingers vary, in contrast with rigid body grasping whose torques

are invariant under forces.

In this thesis the object’s deformation and configuration of contact with fingers and

the plane are tracked with finite element method(FEM) in an event-driven manner based

on the contact displacements induced by the finger movements.

The first part of this thesis analyzes two-finger squeeze grasping of deformable objects

with a focus on two special classes: stable squeezes, which minimize the potential energy

of the object among squeezes of the same depth, and pure squeezes, which eliminate all

euclidean motions from the resulting deformations. Based on them an algorithm to char-

acterize the best resistance by a grasp to an adversary figner is proposed which minimizes

the work done by the grasping fingers. An optimization scheme is offered to handle the

general case of frictional segment contact. Simulations and multiple experiments with a

Barrett Hand on a rubber foam object are presented.

The second part of this thesis describes a strategy for a two-finger robot hand to

grasp and lift a 3D deformable object resting on the plane. Inspired by the human hand

grasping, the strategy employs two rounded fingers to squeeze the object until a secure

grasp is achieved under contact friction. And then lift it by translating upward to pick



www.manaraa.com

ix

up the object. During the squeeze, a lift test is repeatedly conducted until it is successful

based on the metrics and then trigger the upward translation. The gravitational force

acting on the object is accounted for. Simulation is presented and shows some good

promise for the sensorless grasping approach for deformable objects.
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CHAPTER 1. INTRODUCTION

The difficulty of robot grasping of deformable objects comes from both mechanics

and computation. First of all, deformation caused by the grasp actions changes the

global geometry of the object. Second, during deformation an object’s contacts with the

fingers grow from points into areas. Inside the contact area, points that stick to the

finger may later slide while points that slide may later stick. The torques exerted by the

grasping fingers vary, in contrast with rigid body grasping whose torques are invariant

under forces.

Determining a small deformation based on linear elasticity ends up with down to

solving a system of fourth order differential equations (1), which has no closed-form

solution generally. In practice, effiecient computation is conducted using finite element

method (FEM) (2) which relies on positional constraints. That is because the stiffness

matrix of an unconstrained object has a null space consists of all its rigid body motions.

All of the above implies that the displacements of some points of the object need to be

specify to carry on deformable modeling during a grasp.

In this thesis we choose to specify the desired displacements of the grasping fingers

and the points on the plane instead of the force they exert. In practice it is much easier

to command a finger to move to a specific position than to control it to exert a designated

force. Also, forces are not much of our concern here as long as the object can be grasped

in our task.

In the first part of the thesis , we investigate how to characterize the quality of

a squeeze grasp in 2D grasping proposed in (3). A successfull rigid body grasp must
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not induce any movement of the contact points. Existing metrics for the quality for

rigid body grasping are force-centered, either to maximize the worst-case adversary force

resistance by a unit total grasping force (6), (8), to minimize the maximum finger contact

force to resist the adversary force (9), (10), or to minimize the possibility of violating

some hard constraints (4), (5). We refer to (11) for a comprehensive summary on various

rigid body grasp metrics.

Howerver, on deformable objects, the grasping fingers perform some work due to

deformation, most of which is converted to strain energy. Therefore it makes sense to

have an energy-based metric for measuring the quality of grasp. The deformation-space

approach (13) was proposed byGopalakrishnan and Goldberg to characterize the optimal

grasp as the one from which the potential energy needed for a release is equal to the

amount at the elastic limit of the object. In this thesis, we present the measure by the

amount of the work performed by the grasping fingers to resist a distrurbing finger under

known displacement.

The second part of the thesis introduces a simple strategy for a robot hand without

using tactile sensing to pick up 3D deformable objects at rest. Human hands are experi-

enced at handling deformable objects in daily life. To pick up a soft object sitting on the

table, for instance, human hand usually squeezes it using two or more fingers to achieve

a firm grasp, leveraing the table’s support to ensure stability. After that the hand, con-

sidering the object’s mass and contact friction, starts to lift it up at some point. During

the lift as an increasing portion of the obejct’s weight is felt, the hand may apply extra

squeeze to prevent slips. Inspired by human hand grasping, our strategy for robot hands

is to squeeze an object and shortly, after every extra amount of squeeze, they perform

a lift test to check if the obejct is able to be lifted. Once the test is passed, the fingers

stop squeezing and pick up the object via upward translation. Through out the process,

the object is fully constrained by the fingers, with or without the supporting plane.
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1.1 Assumptions

In this thesis we assume that the entire operation causes by small deformatios of

the object that can be describe wtihin the scope of linear elasticity. In the classical

elasticity theory, deformation happens instantaneously. Here we will sometimes consider

deformation as a continuous process which happens in an infinitesimal amount of time,

in order to capture the varying contact area between the object and the fingers and

changing contact modes of contact nodes.

The initial finger placement needs to prevent all Euclidean motions. In the presence

of friction, the placement needs to be force closure if the object were rigid. From the

result by (14), the segment connecting the two initial contact points must lie inside their

friction cones. Under a squeeze, each contact point will grow into a segment in which

the points may switch their contact modes between stick and slip. The contact segment

is not regarded as sliding as long asat least one point on the segment sticks.

For 2D grasping, we make the following assumptions:

1. The object is isotropic, and either plannar or thin 2-1
2
D.

2. Gravity is ignored.

3. The fingers are rigid and coplanar with the object and make frictional contact

with it.

And also the fingers are with semicircular tips in 2D grasping and with semispherical

tips in 3D case.

The thesis uses meter for length, Pascal for pressure, Newton for force, and Joule for

work and energy. The units are omitted from now on.

1.2 Organization of the Thesis

The rest of the manuscript is organized as follows.
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Chapter 2 surveys related work in robot grasping on rigid body and deformable

objects.

Chapter 3 will briefly review some basics of linear elasticity, fourndation of squeezing

, and characterize stable and pure squeezes of a deformable object.

In Chapter 4, we will construct grasps that perform minimum work to resist an

adversary finger, progressing from the cases of fixed point and segment contacts to that

of frictional segment contacts.

In Chapter 5, we propose a simple strategy for a robot hand to grasp and lift a

deformable 3D object resting on a table.

Chapter 6 discusses the future work.
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CHAPTER 2. RELATED WORK

Rigid body grasping is an extensively studied area rich with theoretical analyses,

algorithmic syntheses, simulations and experiments with robotic hands (15). First-order

form closure (16) is widely regarded as equivalent to force closure with frictionless con-

tacts. Mishra (12) gave upper bounds on the numbers of contact points sufficient and/or

necessary for form closure. Tighter bounds were later derived for 2D and 3D objects

with piecewise smooth boundaries (7). Algorithms were proposed to compute all form

closure grasps of polygonal parts (17; 18). There was also some work (19; 20) on caging

an object with imposed frictionless contacts so that it could move inside but not escape.

Two-finger force-closure grasps of 2D objects are efficiently computable for both poly-

gons (14) and piecewise smooth curved shapes (22). Ponce (21) also developed algorithms

for grasping 3D objects. Trinkle (23) formulated the force-closure test as a linear pro-

gram with an objective function which characterized the quality as the distance from

losing the closure.

The introduction of task ellipsoid (5) formalized the idea that the choice of a grasp

should be based on the capacity to generate wrenches that were relevant to the task.

Grasp quality measures for multifingered hands were proposed to consider selection of

internal grasping forces that were furthest from violating any closure, friction, or mechan-

ical constraints (4), or were directly derived from the grasp matrix which characterized

the wrench space of a grasp (5). Grasp metrics for polygons and polyhedra often sought

to maximize the worst-case external force that could be resisted by a unit grasping force

(6; 8; 24). A summary was given by Mishra (11) on various grasp metrics, addressing
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the trade-offs among grasp goodness, object geometry, the number of fingers, and the

computational complexity for grasp synthesis. Some recent work (10; 9) applied semidef-

inite programming techniques to minimize the maximum magnitude of the contact force

at any frictional contact of a grasp in order to maintain equilibrium against a known

adversary wrench .

There was not much work when it comes to grasping deformable objects, a difficult

problem that needs to deal with changing local contact geometry as well as the global

object geometry caused by the physical deformation. The notion of bounded force-closure

(27) was introduced for this type of grasps. Hirai (28) controlled the motion of a grasped

deformable effectively object with visual and tactile information. The deformation-space

approach (13) characterized the optimal grasp of a deformable part as the one from which

the potential energy needed for a release equals the amount at the parts elastic limit.

In contrast, manipulation of flexible linear objects such as wires or ropes has been

a very active area, with work on static modeling (26), knotting and unknotting (29; 30;

31; 25), pickup (32), and path planning (33). These operations, however, can be carried

out without a need for deformable modeling.

Sinha and Abel (34) proposed a model for deformation of the contact regions under

a grasp, predicting normal and tangential contact forces with no concern of global defor-

mation or grasp computation. Luo and Xiao (35) demonstrated that simulation accuracy

and efficiency could be improved based on derived geometric properties at a deformable

contact. Tian and Jia (36) investigated deformable modeling of shell-like objects that

were already grasped under point contacts.

More thorough investigations on the elastic contact problem were conducted by the

mechanics community regarding the contact area between two deformable bodies under

a known applied load. The gradual nature of the physical process suggests iterative

updates of the growing contact region(s). In the work by Francavilla and Zienkiewicz

(37), an FEM-based solution was given for 2D elastic contact problems under frictionless
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contacts. It was extended to incorporate Coulomb friction by Okamoto and Nakazawa

(38) and Sachdeva and Ramakrishnan (39) via iterative updating of the contact area

and the modes of individual contact nodes: stick, slip, contact establishment, or contact

break. In each iteration, FEM computed the deformed shape based on position and

friction constraints derived from the contact modes under Coulomb friction. This event-

based approach was extended by Chandrasekaran et al. (40) to handle geometric and

physical nonlinearities as well as node-edge contacts in solving for the exact loading

condition from prescribed displacements.

Guo(3) investigated squeeze grasping of deformable 2D objects. One of the ideas

reflecting a key difference from rigid body grasping, was to specify the finger movements

rather than finger forces. This is because force and torque equilibrium are guaranteed

over a deforming body which is fully constrained, following (1), (41). Another idea was

to obtain the constraints needed for deformation updates from the contact sets with the

fingers, which are modified in an event-driven manner during the deformation.
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CHAPTER 3. STABLE AND PURE SQUEEZES

This chapter begins with a review of plane linear elasticity, and then introduces the

notions of pure and stable squeezes of an object induced by the specified movements of

a subset of boundary points.

3.1 Linear Plane Elasticity

Consider a thin flat object shown in Figure 3.1 with thickness h significantly less than

its two other dimensions. Essentially, the object is a generalized cylinder which results

from translating the region S bounded by a closed simple curve in the xy-plane along

the z-direction upward and downward each by h/2. The origin is placed at the centroid

of S.

S hx

z

y

Figure 3.1 Thin flat object.

In this part, we consider plane stress (42) parallel to the xy-plane which means

zero normal stress along the z-axis and zero shear stresses in the x-z and y-z planes.

Under a displacement field δ = (u(x, y), v(x, y))T , every point (x, y)T inside S moves to

(x + u, y + v)T . The same displacement applies to the points of the object that are
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vertically above or below the point (x, y)T . The normal strains εx and εy along the x-

and y-axes, respectively, and the shearing strain γxy are given below:

εx =
∂u

∂x
,

εy =
∂v

∂y
,

γxy =
∂u

∂y
+
∂v

∂x
.

(3.1)

Under Hooke’s law, the following stress-strain relationships hold:

εx =
σx − νσy

E
,

εy =
σy − νσx

E
,

γxy =
τxy
G

=
2(1 + ν)

E
τxy,

(3.2)

where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively, σx

and σy are the normal stress components in the x- and y-directions, respectively, and τxy

is the shear stress in the x-y plane. The strain energy of the object (1) is

U =
h

2

∫∫
S

(
E

1− ν2
(ε2x + 2νεxεy + ε2y) +

E

2(1 + ν)
γxy)dxdy. (3.3)

Suppose δ is the displacment vector caused by external forces applied in the plane at

some boundary points, which forms a set Γ. Denote by f(x, y) the force exerts at point

(x, y)T ∈ Γ. The total potential of the applied forces is

W = −
∑

(x,y)T∈Γ

δ(x, y)Tf(x, y). (3.4)

The total potential energy of the system is

Π = U +W. (3.5)

The principle of minimum potential energy states that δ minimizes Π.
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3.2 Foundation of Squeezing

This section goes through a quick review of (3) on squeeze grasp with two fingers in

2D grasping. The cross section of the object is discretized into small uniform triangular

elements with n vertices. Minimization of the potential energy yields the familiar con-

stitutive equation: Kδ = f , where K is the shape’s stiffness matrix that is symmetric

and positive semi-definite with rank 2n − 3, δ is the displacement vector, and f is the

external force vector.

The matrix assumes a spectral decomposition that

K = V ΛV T , (3.6)

where V = (vij) = (v1,v2, ...,v2n) and Λ = diag(λ1, ..., λ2n−3, 0, 0, 0). The null space

of K is spanned by the following three vectors which represent translations and pure

rotation:

v2n−2 =
(1, 0, ..., 1, 0)T√

n
,v2n−1 =

(0, 1, ..., 0, 1)T√
n

, and v2n =
r

‖r‖ , (3.7)

where r is the component of (−y1, x1, ...,−yn, xn)T that is orthogonal to v2n−2 and v2n−1.

The grasp strategy is to specify the displacements δt of m boundary contact nodes

pt, t ∈ I. Denote by v̄l, 1 ≤ l ≤ 2m, the 2m-vector that aggregates v2t−1,l and v2t,l, for

all t ∈ I, in the increasing index order. Introduce the matrix

M =

 A B

BT 0

 , (3.8)

where A =
∑2n−3

l−1
1
λl
v̄lv̄

T
l and B = (v̄2n−2, v̄2n−1, v̄2n). It was shown in (3) that the

(2m+ 3)× (2m+ 3) matrix M has an inverse when m ≥ 2:

M−1 =

 C E

ET −ETAE

 , (3.9)

where C is symmetric and of dimenstion 2m× 2m.
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Deformation is uniquely determined for m ≥ 2 under specified δt, t ∈ I, and f l = 0,

l 6∈ I. Apply the same bar notation to select entries with indices i ∈ I from the force

vector f and the displacement field δ. We have

f̄ = Cδ̄ and δ = Hδ̄, (3.10)

for some 2n × 2m matrix H. The submatrix C is referred to as the reduced stiffness

matrix. The strain energy of the object is

U =
1

2
δ̄
T
Cδ̄. (3.11)

3.3 Stable Squeezes

Denoted by G(pi, pj) the placement of two fingers F1 and F2 at the nodes pi and pj

. For clarity of description, in this section we assume that F1 and F2 are point fingers,

and pi and pj will always stay as the only contact points during a grasp operation by

the fingers as if it is glued with the object.

Theorem 3.3.1. Suppose m ≥ 2. The following statements hold for the submatrices of

M and M−1.

(1) rank(B) = 3.

(2) C is symmetric and positive semi-definite such that null(C) = col(B). This

implies that the 2m-dimensional space is a direct sum of the column spaces of C and B:

R2m = col(C)⊕ col(B). (3.12)

(3) rank(AC) = 2m− 3 and AC has only one eigenvalue 1 (of multiplicity 2m− 3).

(4) R2m = col(AC)⊕ col(E).

For stability reason we want to determine the direction under the same amount of

squeeze that minimizes the potential energy

Π = U − δTf = U − δ̄T f̄ = −1

2
δ̄
T
Cδ̄. (3.13)
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by equations 3.10 and 3.11. Because m = 2, rank(C) = 4−rank(B) = 1 following

Theorem 3.3.1. It is clear that Π is minimized by a unit vector orthogonal to col(B).

We can easily show that

û =
1√

2‖pi − pj‖

 pj − pi
pi − pj

 (3.14)

is such a unit vector. Indeed, it is the only one corresponding to a grasp because −û

pulls at the contacts.

Theorem 3.3.2. û is orthogonal to null(C). Moreover,

C =
1

ûTAû
ûûT . (3.15)

We refer to a movement of F1 and F2 specified by δ̄ = ρû, ρ > 0, as a stable

squeeze, so called because it minimizes the systems potential energy among all squeezes

of magnitude ρ. Substituting δ̂ = ρû and equation 3.3.2 into 3.11, we obtain the strain

energy

Us = ρ2/(2ûTAû). (3.16)

3.4 Pure Squeezes

A stable squeeze is good since it minimize the potential energy. However, it does not

guarantee that the resulting displacement field has no rigid body motion component.

Since linear elasticity cannot describe large rotation, sometimes we would like to avoid

rotation. That is why we introduce pure squeeze which yields no rigid body motion. This

is equivalent to ET δ̄ = 0 as we can establish using equation 3.10. By Theorem 3.3.1,

the set col(AC) includes all pure squeezes. Since AC = AûûT/(ûTAû) following Theo-

rem 3.3.2, we can infer that col(AC) is spanned by Aû. Let v̂ = Aû/‖Aû‖. The squeeze

v̂ can be viewed as what is left from the squeeze û after stripping off its component that
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is responsible for rigid body movement. For a pure squeeze specified by ρv̂, ρ > 0, we

derive the resulting strain energy

Up = ρ2ûTAû/(2ûTAAû). (3.17)

While a stable squeeze makes sure that the movements of the two fingers do not

contain any rigid body motion, a pure squeeze makes sure that the object deforms with

no rigid body motion component. Figure 3.2 compares the effects of the unit stable

squeeze û and the unit pure squeeze v̂ on an object. While under û the fingers drive

the two contact points toward each other, under v̂ they bend the object to prevent any

Euclidean motion, in a ”smart” way by exerting smaller contact forces.

pi

û

f i
f i

f j

v̂

pj
f j

Figure 3.2 Comparison between unit stable and pure squeezes.

(a) original shape shown with a stable squeeze
û = (0.65923, 0.25577,−0.65923,−0.25577)T in brown and a pure squeeze

v̂ = (0.79644,−0.49167,−0.20702,−0.28477)T in green; (b) deformed shape under û
with resulting contact forces fi = (0.90772, 0.35218)T and fj = (0.90772, 0.35218)T ; (c)
deformed shape under v̂ with fi = (0.55243, 0.21433)T and fj = (−0.55243,−0.21433)T .

Since translating two fingers F1 and F2 by δi and δj, respectively, is equivalent

to fixing one finger, say F1, while translating F2 by δj − δi the two resulting config-

urations are identical except for a translation by δi. Thus, we consider a squeeze as

stable(respectively, pure) if it is the same as ρû(respectively, ρv̂) up to translation and

rotation.
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CHAPTER 4. RESISTING AN ADVERSARY FINGER

In this chapter, we will consider adversary finger resistance. Consider a finger place-

ment G(pi, pj) on a deformable object. Now that an adversary finger A comes in, makes

contact with the object at pk, and tries to break the grasp via a translation a. To resist

A, the two grasping fingers F1 and F2 translate by d1 and d2 accordingly, respectively.

We would like to find d1 and d2 that result in the minimum total effort by F1 and F2 in

such resistance. The effort of resistance is best characterized as the total work performed

by the two grasping fingers.

The general scenario is depicted in Figure 4.1, in which the finger contacts have

evolved from the nodes pi, pj, pk into segments as F1, F2, A translate. Every contact

segment is uniquely represented by a set of nodes on it. Suppose that at one moment

during the process, F1 makes contact with the set of nodes {pt | t ∈ I}, F2 with

{pt | t ∈ J}, and A with {pt | t ∈ K}. Some nodes (solid dots in the figure) are sticking

on the fingertips, while others (hollow dots) are sliding. We can divide the scenario into

small periods, such that within each period the contact index sets I,J,K do not change.

pi

d2

A

F2

F1

a

d1

pk

pj

Figure 4.1 Grasp Resistance to a translating adversary finger A.
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We will approach this optimization problem in three steps. In Section 4.1, we will look

at fixed point contacts (i.e., |I| = |J| = |K| = 1 and the three sets never change) during

the resistance. In Section 4.2, we will generalize the result to fixed segment contacts

(|I| = |J| = |K| ≥ 1 and the sets do not vary). Based on this we will tackle the general

situation with varying I, J, K and changing contact modes at individual nodes during

the resistance under Coulomb friction in Section 4.3.

4.1 Fixed Point Contacts

The nodes pi, pj, and pk will stay as the only contact points with the fingers F1, F2,

and A, respectively (as if the fingers and the object were glued together). Deformation

of the object is due to their displacements

δ̄ =


δi

δj

δk

 =


di

dj

a

 . (4.1)

By 3.10 the work done by F1 and F2 is

WF =
1

2


d1

d2

0


T

f̄ =
1

2


d1

d2

0


T

C


d1

d2

a

 . (4.2)

Similarly, for the three point fingers we call δ̄ a stable resistance if δ̄ ∈ col(C), and

a pure resistance if δ̄ ∈ col(AC). Since m = 3, both col(C) and col(AC) have three

dimensions by Theorem 3.3.1.

4.1.1 Optimal stable resistance

Consider all d1 and d2 such that δ̄ ∈ col(C), or equivalently, δ̄ ⊥ col(B), which is

spanned by (1, 0, 1, 0, 1, 0)T , (0, 1, 0, 1, 0, 1)T , and (−yi, xi,−yj, xj,−yk, xk)T . Equiva-

lently, we require
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d1 + d2 + a = 0, (4.3)

pi × d1 + pj × d2 + pk × a = 0, (4.4)

Substitute equation 4.3 into 4.2 for d2, and rewrite WF as a quadratic form in terms of

d1:

WF =
1

2
dT1Hd1 + cTd1 + ω, (4.5)

where H, c, and ω are constant matrix and vectors depending on a and C. It is easy to

show that H is positive semi-definite.

Denote by t̂ the unit vector in the direction of pi − pj, and n̂ the unit vector such

that t̂ · n̂ = 0 and t̂× n̂ = 1. Write d1 = τ t̂+ ηn̂. Substituting it and 4.3 into 4.4, we

obtain

η = d · n̂ = (pj − pk)× a/‖pi − pj‖. (4.6)

Now, plug d1 = τ t̂+ ηn̂ into 4.4. After a few steps, we have a new form for the work:

WF =
1

2
b2τ

2 + b1τ + b0, (4.7)

where b0 = ω+ η(1
2
ηn̂TH + cT ), b1 = (ηn̂TH + cT )t̂, and b2 = t̂

T
H t̂. The positive semi-

definiteness of H implies that b2 > 0. Therefore, WF is a parabola with the minimum

value W ∗
F = b0− b21

2b2
achieved at τ = −b1/b2. Note that b0 scales with ‖a‖2 and b1 scales

with ‖a‖, while b2 is constant. The minimum work W ∗
F scales quadratically with ‖a‖.

Figure 4.2 shows a resistance scenario. The minimum work is W ∗
F = 0.01031. The

average rotation per node is δ · v2n = 0.0035418.

4.1.2 Optimal pure resistance

In this section we find a pure resistance that minimizes WF , considering only d1 and

d2 such that δ̄ ∈ col(AC). Represent δ̄ = τ1û1 + τ2û2 + τ3û3, where û1, û2, û3 are the
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δj

δi

f k

f i

f j

a

p̃i

p̃j
pj

pk p̃k

pi

Figure 4.2 A grasp resisting an adversary finger.

A grasp G(pi, pj) resisting an adversary finger at pk = (0.05900, 0.00502)T under
translation δk = a = (−0.01, 0)T , where pi = (−0.03537,−0.04685)T and

pj = (−0.01256, 0.05212)T : (a) undeformed shape marked with optimal displacements:
δi = (0.00475, 0.00006)T and δj = (0.00525,−0.00006)T ; and (b) deformed shape

marked with the corresponding nodal forces: f i = (2.5031, 0.3105)T ,
f j = (2.8792,−0.4901)T , and fk = (−5.3823, 0.1796)T .

orthogonal unit vectors that span col(AC). From these two equivalent representations

of δ̄, we infer that

a = Q


τ1

τ2

τ3

 , (4.8)

where the 2× 3 matirx Q = (0, I2)(û1, û2, û3).

If Q is not of full rank and a is not in its column space, then we infer that δ̄ ∈

col(AC) and the adversary finger cannot be resisted.

In the general case rank(Q) = 2, τ2 and τ3 are linear in τ1, yielding WF as a

quadratic function of τ1. The optimal grasping finger displacements can be obtained

from dWF/dτ1 = 0. This solution also works for rank(Q) = 1 and a ∈ col(Q), after

proper permutation of τ1, τ2, τ3 to set the latter two to zero.
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4.2 Fixed Segment Contacts

In this section, the contact index sets I, J, K may have sizes greater than one, but

still they will not change during the resistance. In other words, no existing contacts will

break and no new contacts will come in. All the nodes in contact with the same finger

undergo the same displacement. More specifically, a contact node pt is displaced by

δt =


d1, if t ∈ I;

d2, if t ∈ J;

a, if t ∈ K.

(4.9)

Rearrange the rows and columns of the reduced stiffness matrix in the same index order

as in δ̄.

Again, we first consider stable resistances, for which the following generalizations

of 4.3 and 4.4 hold:

∑
t∈I∪J∪K

δt = 0 and
∑

t∈I∪J∪K
pt × δt = 0. (4.10)

The first condition above yields d2 in terms of d1 and a. Substitute it into the second

condition to yield

|I|(p̆− q̆)× d1 + |K|(r̆ − q̆)× a = 0, (4.11)

where p̆ = 1
|I|
∑

t∈I pt, q̆ = 1
|J|
∑

t∈J pt, and r̆ = 1
|K|

∑
t∈K pt are referred to as the contact

centroids of the fingers F1,F2,A, respectively.

F1 and F2 into the form of equation 4.5, where H, c, and ω assume new expressions.

Minimization parallels that in Section 4.1 with a decomposition of d1 along the direction

t̂ of p̆− q̆, and its orthogonal direction n̂.

The case of a pure resistance with fixed segment contacts also generalizes that of

fixed point contacts in Section 4.1. We will end up with a very similar optimization
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problem. Aside from a different form of WF and different variables τ ′1, τ ′2, τ ′3, over which

the constraint is a = (0, I2)(û′1, û
′
2, û

′
3)(τ ′1, τ

′
2, τ
′
3)T .

4.3 Frictional Segment Contacts

We are now finally ready to consider optimal resistance with varying segment contacts

under friction. The two grasping fingers and the adversary finger have semicircular

fingertips with possibly different radii. In a realistic scenario, the grasping fingers F1 and

F2 first perform a squeeze on the object by translating toward each other via s(pj − pi)

and s(pi − pj), for some s > 0, which is called the pre-grasp. Then the adversary finger

A makes contact at the node pk and exerts a translation a to try to break the grasp.

The system configuration right before this disturbance, including the objects deformed

shape and the contact index sets I and J for F1 and F2, can be determined using the

event-based squeeze grasping algorithm from (3).

The translation distance by the adversary finger A will be sequenced into a0 = 0 <

a1 < · · · < |a| such that at every al , one of the four contact events A, B, C, and D

described in (3) takes place.

Algorithm 1 describes how F1 and F2 resist A. Again, denote by I, J, K the sets of

indices of the nodes that are in contact with F1, F2, and A, respectively.
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Algorithm 1 Resisting a Translating Adversary Finger under Frictional Segment Con-

tact
Input: contact index sets I, J,K for F1, F2, A, translation a of F2

1: a← 0

2: let I, J,K contain the indices of the initial point contacts with F1, F2, A, respectively

3: initialize T and P

4: while a < ‖a‖ and no finger slips do do

5: construct the form of W̃ ′
F based on equations 4.12, 4.13, and I, J,K

6: minimize W̃ ′
F to obtain ψ1 and ψ2 as the translations of F1 and F1 in response

to a (hypothesized) unit translation a/‖a‖ by A.

7: execute the event-driven algorithm in (3) along the displacement directions com-

puted in step 6 until the next contact event occurs

8: compute the actual work W ′
F

9: WF ← WF +W ′
F

10: update I, J, K, T, P according to the contact event

11: update the contact force f t,∀ t ∈ I ∪ J ∪K

12: end while

13: if a < ‖a‖ and (F1 or F2 slips) then

14: return failure

15: else

16: return WF

17: end if

Consider the moment when A has translated by the distance al. For a contact node

pt we use δ
(l)
t , f

(l)
t , and θ

(l)
t to refer to its displacement, contact force, and polar angle

with respect to the center of its contacting fingertip.

Next, A will continue moving by an extra distance ξ in the direction of a. Suppose

that ξ is small enough such that all contacts and their modes will not change. We
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determine the extra translations d′1 of F1 and d′2 of F2 to resist this extra movement by

A, via minimizing the extra work performed by these two fingers:

W ′
F =

∑
t∈I∪J

δ′tf
(l)
t +

1

2

∑
t∈I∪J

δ′tf
′
t (4.12)

In the above, for t ∈ I ∪ J, δ′t is the change in the displacement of the contact node pt

from δ
(l)
t , and f ′t the change in its contact force from f

(l)
t .

During this extra translation period, if a node pt, t ∈ I ∪ J, sticks, then δ′t = d′1

or d′2. If it slides, then δ′t will be the sum of d′1 or d′2 and the nodes movement

r

 cos θt − cos θ
(l)
t

sin θt − sin θ
(l)
t

 , on the tip of F1 or F2 that it is in contact with. Minimiza-

tion of W ′
F would be over δ′1 and δ′2, and the polar angle θt of every sliding contact pt.

It could get too inefficient.

We stipulate that the work performed on pt, t ∈ I ∪ J, due to its sliding, by the

contacting finger F1 or F2 will be significantly less than the amount due to its translation

with the finger. Instead of minimizing W ′
F , we minimize its approximation W̃ ′

F by

treating every sliding node in contact with F1, F2, or A as if it would be sticking during

the period of the extra resistance period.

In short, whether a contact node pt sticks or slips, its extra displacement δ′t will be

set as follows:

δt =


d′1, if t ∈ I;

d′2, if t ∈ J;

ξâ, if t ∈ K.

(4.13)

Then d1 = ξψ1 and d′2 = ξψ2, where ψ1 and ψ2 are determined like d1 and d2 in Section

4.2 with â replacing a.

We determine the extra distance ξ by which A translates until the next contact event

happens, by using the event-driven algorithm proposed in (3). Once an event occurs, the

overall translation distance for A is updated as al+1 = al + ξ. In addition to the index

sets I, J, K, update the set P of sliding contacts and the set T of sticking contacts. If
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Table 4.1 Forces exerted and work performed by the the two grasping fingers in Fig-
ure 4.3 under translations d1, d2, and a.

F1 F2

force(start) 2.098 -2.566
force(end) 8.136 -1.23

work 0.0101 -0.0015

the adversary finger A begins to slip after an event, it has been successfully resisted. If

either F1 or F2 starts to slide, the grasp fails to resist A. If none of the above two cases

happens, A will complete its translation a while being resisted.

4.4 Simulation and Experiment on Grasp Resistance

Figure 4.3(a) shows an object with convex shape grasped under a stable squeeze

by F1 (translating via (0.00068, 0.002)T from pi to pj) and F2 (motionless). Then, an

adversary finger A starts pushing the object through translation a = (0.0024, 0.0044)T

, as shown in (b). All three fingertips have radius 0.02. Algorithm 1 generates two

trajectories for F1 and F2 for a stable squeeze shown in (c). They have total displace-

ments d1 = (−0.0008,−0.0019)T and d2 = (−0.0007,−0.0005)T . Table 4.1 displays the

components of the finger forces exerted along the translation directions, at the start and

the end of resistance, and the work performed by the fingers. A negative force reading

on F2 indicates that the contact force influenced by friction was pulling away from the

translation direction of the finger. Contact events A, B, C, D occurred 7, 0, 3, and 2

times, respectively, during the resistance. The coefficient of contact friction is 0.4.

Shown in Figure 4.4(a) is an experiment to validate the results in Table 4.1 from the

instance in Figure 4.3. The object with exactly the same shape in Figure 4.3 was placed

on a raised platform. The grasping fingertips F1 and F2 were respectively controlled

by an Adept Cobra 600 manipulator and the Barrett Hand. As shown in (b), F1 was
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attached to a force meter from Ametek Hunter Spring, which was connected to the

Adept’s open end via an adapter. The manipulator has an accuracy of 0.02mm in

any horizontal direction. Since none of the three fingers of the Barrett Hand could be

controlled to perform straight line motions, we let its middle finger push fingertip F2

via a linear mechanism, which is shown in (c) in both top-down and side views. The

mechanism was an aluminum cylindrical stick constrained by ball bearings embedded

inside two boxes. At its one end was a disk to be pushed by the finger of the Barrett

Hand or human hand. Near its other end, a force meter was attached underneath. The

tip F2 was mounted at the front of the force meter, which would be able to measure the

force exerted by the tip once it made contact with the object.

The human hand pushed the adversary fingertip A via another linear mechanism

identical to the one driving F2. No force meter was attached to this pusher. A ruler was

mounted on the tops of the two ball bearing boxes to measure the travel distance by A.

The translations by F1 and F2, meanwhile, were precisely controlled by the Adept and

the Barrett Hand. The fingers F1 and F2 first made contact with a foam object. To

repeat the simulation instance in the above, F2 stayed still and F1 squeezed the object

via a translation (−0.00068, 0.002)T along the line through their initial contact points

with the object. The configuration after the squeeze is shown in Figure 4.5(a). After-

ward, the human hand pushed A via the linear mechanism to complete a translation

a = (0.0024, 0.0044)T . Algorithm 1 generated two trajectories shown in Figure 4.3(c)

respectively for F1 and F2 based on stable squeezes. For ease of control, each trajectory

was straightened by connecting its starting location to its final location, yielding trans-

lations d1 = (−0.0008,−0.0019)T and d2 = (−0.0007,−0.0005)T (see the dashed lines in

Figure 4.3(c)). The human hand executed the push a, which was simultaneously being

resisted by the Adept arm and the Barrett hand via translations d1 and d2, respectively.

We refer to the resistance specified by d1 and d2 as the ”optimal” resistance. The
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Table 4.2 Forces exerted and work performed by F1 and F2 in Figure 4.5 under d1 and
d2 computed by the resistance algorithm (columns 23) or arbitrarily chosen
(columns 45).

”optimal” resist. ”arbitrary” resist.
F1 F2 F1 F2

force(start) 2.22 -2.67 7.05 4.20
force(end) 8.06 -1.45 14.86 13.93

work 0.0107 -0.0017 0.0463 0.0328

work done by F1 or F2 was estimated as half the product of the translation distance with

the summation of the initial and final force readings for each finger. Columns 2 and 3 in

Table 4.2 displayed the force readings on these two grasping fingers at the start and the

end of the resistance, and the work they performed. We can see that small discrepancies

exist compared to Table 4.1. They were mainly due to the trajectory straightening and

measurement errors in the experiment. For comparison, we also tested an ”arbitrary”

resistance strategy against the same adversary finger disturbance. We arbitrarily chose a

translation direction d2/‖d2‖ = (0.447,−0.894)T for F2. Then d1 = (−0.004,−0.0012)T

and d2 = (0.0016,−0.0032)T were determined from the condition (dT1 ,d
T
2 ,a

T )T ⊥ col(B)

for a stable squeeze. The experimental result was included in Table 4.2. It can be seen

that much less work was carried out by F1 and F2 under the optimal resistance strategy.
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(a) (b)

d1

δ2

a

d2

(c)

Figure 4.3 Resisting an adversary semicircular fingertip under friction.

(a) A convex shape grasped via a stable squeeze. (b) Successful resistance to an
adversary finger A. (c) Trajectories of the three fingers during the resistance, with

their starting points translated to coincide with the origin, which, for display purpose,
is also made the ending point of the trajectory δ1 of F1 in achieving an initial grasp

before the resistance.



www.manaraa.com

26

Figure 4.4 Experimental setup for resisting an adversary fingertip A.

(a) grasping fingertips F1 and F2 driven by an Adept Cobra 600 manipulator and a
finger of the Barrett hand, respectively, and A by the human hand; (b) F1 attached to

a force meter rigidly connected to the Adept’s open end via an adapter; (c) F2

attached to another force meter rigidly connected to a linear mechanism to be pushed
by the Barrett finger.
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Figure 4.5 Experiment for resisting an adversary finger.

(a) Grasp of a convex object and (b) its resistance to an adversary finger A. The
translation δ1 of F1 in (a), and the translations d1, d2, and a of F1,F2 and A are

drawn in Figure 4.3.
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CHAPTER 5. PICKING UP 3D SOFT OBJECTS

This chapter will begin with a brief review of linear elasticity for 3D solids, and the

characterization of all displacement fields that represent rigid body movements. It will

then describe an FEM formulation of deformation under gravity. We will move on to

offer a solution of the deformed shape of a solid from specified contact displacements.

Finally we will propose a strategy to pick up a deformable 3D object with two fingers

under resting.

5.1 Linear Elasticity

Consider a 3D object under a displacement field (u(x, y, z), v(x, y, z), w(x, y, z))T .

Every point (x, y, z)T inside the object moves to (x + u, y + v, z + w)T . Denote by εx,

εy, εz the normal strains along the x-, y-, and z-directions, respectively, and γxy, γxz, γyz

the shear strains in the xy-, xz-, and yz-planes, respectively. They are given below:

εx =
∂u

∂x
,

εy =
∂v

∂y
,

εz =
∂w

∂z
,

γxy =
∂u

∂y
+
∂v

∂x
.

γxz =
∂u

∂z
+
∂w

∂x
.

γyz =
∂w

∂y
+
∂v

∂z
.

(5.1)
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The strain energy of the object can be derived:

U =
E

2(1 + ν)

∫
V

((ε2x + ε2y + ε2z) +
ν

(1− 2ν)
(εx + εy + εz)

2 +
1

2
(γ2
xy + γ2

xz + γ2
yz))dV. (5.2)

where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively,

with E > 0 and −1 < ν < 1
2

for most materials including those considered in our

grasping task.

Theorem 5.1.1. Under linear elasticity, any displacement field (u, v, w)T that yields

zero strain energy is linearly spanned by the following six fields:
1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


0

−z

y

 ,


z

0

−x

 ,


−y

x

0

 .

The first three displacement fields in the theorem represent unit translations in the

x-, y-, and z-directions, respectively. The next three fields represent rotations about the

x-, y-, and z-axes under linear elasticity, respectively.

5.2 The Finite Element Method with Gravity

We represent a solid as a tetrahedral mesh with n vertices p1, ..., pn, where pi =

(xi, yi, zi)
T , for 1 ≤ i ≤ n.

Similar as in the planar case, we infer from Theorem 5.1.1 that the stiffness matrix

has a null space spanned by the following six 3n-vectors:

tx = (1, 0, 0, 1, 0, ..., 0)T ,

ty = (0, 1, 0, 0, 1, ..., 0)T ,

tz = (0, 0, 1, 0, 0, ..., 1)T ,

rx = (0,−z1, y1, 0,−z2, ..., yn)T ,

ry = (z1, 0, x1, z2, 0, ...,−xn)T ,

rz = (−y1, x1, 0,−y2, x2, ..., 0)T .

(5.3)
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On the 3D grasping, the gravitational force can rarely be ignored since it plays an

important role during the deformation. Assume that the mass is uniformly distributed

inside the body. Thus every element has mass proportional to its volume.We assign the

element’s mass evenly to its four vertices. Thus the total gravitational force exerted on

a vertex pi, 1 ≤ i ≤ n, sums up a quarter of the gravitational force on each tetrahedron

it is incident on. Write all nodal gravitation forces into a vector G. It is straightforward

to verify that G is orthogonal with all the six vectors spanning the null space except tz,

with which it has a dot product −mg, where m is the object’s mass and g = 9.8 is the

gravitational acceleraton.

The potential energy of the system can be represented as

Π =
1

2
∆TK∆−∆T (F +G). (5.4)

At equilibrium, it reaches its minimum value, implying

K∆T = F +G. (5.5)

The stiffness matrix K is symmetric and thus diagonalizable. With 3n independent

eigenvectors, it is also known to be positive semi-definite. Given its six-dimensional null

space, K has 3n− 6 positive eigenvalues λ1, ..., λ3n−6 corresponding to unit eigenvectors

v1, ..., v3n−6. Let v3n−5, v3n−4, v3n−3 be normalized over tx, ty, tz, respectively. And

let v3n−2, v3n−1, v3n be orthogonalized over rx, ry, rz using Gram-Schmidt procedure.

Thus, G · v3n−3 = −mg/√n while G · vj = 0, 3n − 5 ≤ j ≤ 3n and j 6= 3n − 3.

The matrix has a spectral decomposition K = V ΛV T , where V = (v1, ...,v3n) and

Λ = diag(λ1, ..., λ3n−6, 0, ..., 0).

Because of the singularity of K, boundary conditions are required for solution of 5.5.

They will come from the displacements of the contact nodes as they move with the

squeezing fingers or stay with the supporting plane.
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5.3 Deformation from Specified Contact Displacements

The set of contact nodes will not vary during a very small period of squeeze on

the solid by the fingers. First we need to compute the deformation of the 3D object

from specified displacements δi1, ..., δim of some boundary nodes pi1, ..., pim, which are

supposed to be in contact with a grasping finger or the supporting plane. We refer to

the set C = {i1, ..., im} as the contact index set. Zero external forces are applied at the

non-contact nodes, that is, fk = 0, for k = 1, ..., n and k 6∈ C.

Denote ∆̄ = (δTi1, ..., δ
T
im)T as before. We can solve for the contact force vector F̄ and

the displacement field ∆ from ∆̄ by performing a procedure similar to the one in (3).

Substitute K = V ΛV T into 5.5, and left multiply both sides of the resulting equation

with V T . This yields

∆ =
3n−6∑
k=1

1

λk
(vTk (F +G))vk + (v3n−5, ...,v3n)b

=
3n−6∑
k=1

1

λk
(v̄Tk F̄ )vk + (v3n−5, ...,v3n)b+D,

(5.6)

where D =
∑3n−6

k=1
1
λk

(vTkG)vk is a constant vector. The 3m equations for δi1, ..., δim are

extracted from 5.6, and combined with the six equations vTk (F +G) = 0, k = 3n − 5,

..., 3n. This sets up a linear equation in F̄ and b:

M

 F̄

b

 =

 ∆̄− D̄

(0, 0,mg/
√
n, 0, 0, 0)T

 , (5.7)

where

M =

 A B

BT 0

 , (5.8)

with the 3m× 3m matrix A =
∑3n−6

k=1
1
λk

(v̄kv̄
T
k and the 6× 6 matrix B = (v̄3n−5, ..., v̄3n).

Theorem 5.3.1. The matrix M is non-singular if and only if the m contact points are

not collinear.
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Under the above theorem, when the contacts are not collinear, the system 5.7 has a

unique solution, in other words, the deformation is uniquely determined. To solve the

system, we invert the matrix M to obtain

M−1 =

 C E

ET H

 , (5.9)

where C, E, and H are matrices of dimensions 3m×3m, 3m×6, and 6×6, respectively.

Left multiplication of M−1 with both sides of 5.7 yields

F̄ = C(∆̄− D̄)− E(0, 0,mg/
√
n, 0, 0, 0)T

= C(∆̄− D̄)− mg√
n
e3,

(5.10)

where e3 is the third column of E. The equation relates the contact forces to the

specified contact displacements. With F and D determined, the displacement vector

follows from 5.7.

5.4 Grasping to Pick up a Solid

Having studied deformation under contacts, we move on to consider the task of using

two fingers to pick up a deformable 3D solid on a horizontal plane P . The object’s initial

resting configuration is determined from a surface triangle 4pqprps in contact with P

onto which the vertical projection of the object’s center of mass lies in the interior of the

triangle. The object deforms under gravity over the triangle, causing the contact region

to grow from 4pqprps.

The fingers have identical hemispherical tips F1 and F2 for simplicity and make

initial contact with the resting object at the nodes pi and pj in their current locations

displaced under gravity(as shown in Figure 5.1(a)). Then the fingertips squeeze the

object(as shown in Figure 5.1(b)) and later lift it up via a vertically upward translation,

breaking its contact with the plane as in Figure 5.1(c).
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Figure 5.1 Lifting a deformable solid from the plane.

(a) resting configuration of the solid and initial finger placement; (b) squeezing (with
repeated lift tests); and (c) lifting. Contact regions are shaded.

In the current phase of our work, the fingers are assumed to be translating during the

squeeze in constant directions, denoted by unit vectors d̂1 and d̂2, respectively. Without

loss of generality, let F1 be the moving fingertip. For every unit distance F1 translates

in d̂1, F2 translates in d̂2 by s ≥ 0. Thus, the squeeze action can be represented by

ρ(d̂1, sd̂2), where ρ ≥ 0.

During the deformation the contact region with the fingertips will grow from points

to areas and the contact region with the plane will also change from the original contact

region due to gravity and later shrink during the lift. Denote by I, J, K the contact sets

of the indices of the objects surface nodes. Their union C = I ∪ J ∪ K consists of the

indices of all contact nodes.
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Algorithm 2 Two-finger pickup of a 3D solid

Input: tetrahedral mesh, table contact 4pqprps, finger contacts pi, pj, squeeze (d̂1,

sd̂2)

1: Check if pi and pj form force closure with 4pqprps. If not, return failure.

2: Compute the objects resting configuration on the table from 4pqprps.

3: Squeeze the object by translating F1 and F2.

4: During the squeeze, test if the object can be lifted.

5: If so, stop squeezing and lift the object. Return success.

6: If enough squeeze has been applied and the object still cannot be picked up, report

failure. Otherwise, go back to step 3.

Algorithm 2 describes how to pick up the object. Step 1 applies the procedure from

(43) to check if pi, pj, and the center of 4pqprps would be force closure on a rigid body

with the same shape of the resting object. If force closure is not formed, the object will

not be fully constrained and the algorithm returns failure.

Below we will first describe step 2 on modeling of the object’s resting configuration

when it is in contact with P only, then step 3 and step 5 on squeezing and lifting the

object when it has active contacts with all of F1, F2, and P , and finally step 4 on testing

whether the object can be lifted after some squeeze by considering its contacts with F1

and F2 only.

5.4.1 Initial resting configuration

Before grasping the object, we need to estimate its resting configuration under grav-

ity. Over 4pqprps, the object deforms under gravity. Since the mass center is above the

triangle, force equilibrium is maintained during the deformation, which implies conser-

vation of angular momentum and thus torque equilibrium.

We describe an iterative procedure that computes the initial resting configuration.

At the beginning of each iteration, a node pk, 1 ≤ k ≤ n, has been displaced to the
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location p̃k and receives contact force fk from the plane. Let the set P collect the indices

of sliding nodes. The following steps are carried out in each iteration.

1: P← ∅.
2: Evaluates the change ∆′ from the displacement vector ∆ and the change F̄

′
from

the contact force vector F̄ .
3: ∆←∆ + ∆′ and F̄ ← F̄ + F̄

′
.

4: If no new contact node is found and, for every k ∈ K, fk is inside the friction cone
at p̃k, terminate the algorithm.

5: Otherwise, handle new contact if any.
6: Identify sliding nodes and add their indices to P.
7: Recompute the displacements of all sliding nodes.

In step 2, we fix every contact node pk at p̃k, k ∈ K. Evaluate ∆′ and F̄
′

according

to 5.6 and 5.10 after substitutions of ∆′, F ′, ∆̄
′

for ∆, F , ∆̄ respectively. Update ∆

and F̄ as described in step 3.

In step 4, a new contact exists if some node on the object would be displaced below the

plane. Among all such nodes, let pt be the one that minimizes p̃t · ẑ, where ẑ = (0, 0, 1)T .

In other words, pt would be the furthermost below P if it is penetrable. Step 5 adds pt

as the new contact and scale down δ′t such that p̃t + δ′t lies in P .

Step 6 determines if any existing contact pk, k ∈ K, is sliding by checking if fk is

outside the friction cone, or equivalently, if (1 + µ2
P)(fk · ẑ)2 < ‖fk‖2, where µP is the

coefficient of friction between the object and the table. If the condition holds, add k to

P .

Step 7 evaluates ∆̄
′

and F̄
′

again after the same substitutions in step 2, but this

time we need to evaluate the extra displacements of sliding nodes. Figure 5.2 shows the

situation where the contact force fk is out of the friction cone. Project the force onto P

to obtain fk⊥ = f − (f · ẑ)ẑ. The sliding direction, represented by the polar angle αk,

is opposite to fk⊥ and hence known. Let dk ≥ 0 be the sliding distance, then the extra

displacement is

δ′k = dk(cosαk, sinαk, 0)T .
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Figure 5.2 Sliding of a node on the plane.

Each fk, k ∈ P is a linear function of dl for all l ∈ P. That fk is on the boundary of the

friction cone yields a system of quadratic equations:

(1 + µ2
P)(fk · ẑ)2 = fk · fk, for k ∈ P. (5.11)

There are |P| equations in |P| variables dk, k ∈ P. We solve the system using the

homotopy continuation method (44). With the solution we can update ∆ and F and

move on to the next iteration.

5.4.2 Squeezing and lifting the object

In step 3 of Algorithm 2, the object is being squeezed by F1 and F2 under translations

ρd̂1 and sρd̂2, respectively, with ρ increasing. The contact index sets I, J, K are usually

growing as the squeeze depth ρ increases. The squeeze continues until either at some

point the lift test(which will be introduced in the next section) is passed, or the amount

of squeeze becomes too large that the object is deemed impossible to pick up under the

initial finger placement and squeezing directions.

We here generalize the three-finger event-driven algorithm for in Section 4.3. Se-

quence ρ into ρ0 = 0 < ρ1 < · · · such that at ρ = ρl some event happens to change the

contact configuration. Within the interval [ρl, ρl +1) the changes ∆′ in the displacement

vector and F̄
′

in the contact forces are updated according to the modified 5.6 and 5.10.

The situation that pk slides on a fingertip is illustrated in Figure 5.3. Let p̃k be its

current position before the slip, and δ′k the extra displacement due to the slip. Let n̂k
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be the normal at p̃k pointing into the object. The contact force fk, out of the friction

cone at p̃k, has a tangential component f i⊥ = fk − (fk · n̂k)n̂k.The node pk will slide

from its current position p̃k in the opposite direction of fk⊥ and reach some point qk on

the great circle coplanar with fk⊥ and n̂k. Namely, δ′k = qk − p̃k. The unit normal

N̂ k

O

θk
f k

fingertip

qk

p̃k
f k⊥

n̂k

δ′
k

Figure 5.3 Sliding of a node on the plane.

N̂ k to the plane containing this great circle is in the direction of n̂k × f i⊥. Thus, qk is

obtained from rotating p̃k about N̂ k through some angle θk < 0. We obtain

qk = O + ck(p̃k −O) + sk(N̂ × (p̃k −O)), (5.12)

where ck and sk are the shorthand notations for cos θk and sin θk, respectively. Coulombs

law of friction induces a quadratic equation:

(1 + µ2
F)(fk · n̂k)2 = fk · fk, (5.13)

coupled with

c2
k + s2

k = 1. (5.14)

In the above, µF is the coefficient of friction between the object and a fingertip.

With the updated δ′ks, we can obtain the changes ∆′ in the displacement vector and

F̄
′
in the contact force. They depend on all dk, k ∈ P∩K, and all cl and sl, l ∈ P∩(I∪J).

We end up with a system of 2|P ∩ (I ∪ J)| + |P ∩ K| quadratic equations in the forms
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of 5.11, 5.13, or 5.14 in the same number of variables. Solve the system to update all

contact slips.

We take small increments in the squeeze depth and check after each increment if

any event happens. Upon such an occurrence, we can use Newton’s method to polish

the corresponding squeeze depth value. The contact index sets I, J, K, P are updated

whenever an event happens.

In step 5 of Algorithm 2, once the lift test is passed, the two fingers switch the action

to translate upward. During the lift, the nodal contacts with the plane P will break one

by one, and some contacts with the fingertips could also break under the gravitational

force. Modeling, however, has no difference from that of squeezing. If all the contact

nodes on one finger are sliding, the object slides on the finger and the pickup fails.

Otherwise, the pickup succeed when the object breaks contact with the plane.

5.4.3 Lift test

When the squeeze depth is small, the friction between the object and the two finger-

tips is not enough to balanc the gravity if it is picked up. Starting at some squeeze depth,

every time after the contact configuration is updated, a quick lift test is performed to

check if the object can be picked up. This corresponds to step 4 in Algorithm 2.

The test first sets C ← I ∪ J, as if the supporting plane P were suddenly removed.

The new contact displacement vector ∆̄ gathers only the finger contact displacements

δk, k ∈ C, until this point. The displacement field ∆ and the contact force vector F̄

are recomputed according to 5.6 and 5.10. Essentially, in this computation only the

displacements of the nodes in contact with the fingertips are specified, while those of the

nodes in contact with the plane are not.

If pk, for some k ∈ C, under its recomputed displacement penetrates into F1 or F2,

then add k to C and reset δk such that the displaced location p̃k of pk is on the surface

of the corresponding fingertip. If some fk, k ∈ I ∪ J, points outward from the solid, the
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contact breaks at p̃k, remove k from C. Otherwise, if fk, k ∈ I ∪ J, stays inside the

contact friction cone at p̃k, do not change δk.

Next, we identify the sliding nodes. Initialize P ← ∅ to be the set of their indices.

Consider all k ∈ I ∪ J. If fk points inward but outside the contact friction cone, the

node pk is regarded sliding and k is added to P.

When the ratio |P|/|C| is below certain threshold η, the portion of contact nodes

that are predicted to be sliding is small enough. The lift test is passed. Otherwise, more

squeeze is needed. And the lift test fails.

5.5 Simulation

We simulate the grasping algorithm in Section 5.4 on a sphere with radius 0.05 and

mass 0.42. Its material has Young’s modulus E = 5× 104, and Possion’s ratio ν = 0.03.

We place the origin at the sphere’s center of mass and let the xy-plane be parallel to the

supporting plane P .

Figure 5.4(a) shows a tetrahedral mesh representation of the sphere. The mesh

consists of 367 vertices (with 328 on the surface), 1144 tetrahedra, and 2613 triangular

faces. The triangle 4pqprps to touch the table is colored red at the bottom. Set the

frictional coefficients µP = µF = 0.8.

Part(b) of the figure shows the sphere resting on P after some deformation computed

by the procedure described in Section 5.4.1. The contact region (bottom right) has grown

to three triangles. Also plotted are two hemispherical fingertips F1 and F2 placed at

pi = (−0.00756,−0.0416, 0.0135)T and pj = (−0.0110, 0.0529, 0.0141)T , respectively.

The two fingertips then apply a squeeze specified by (d̂1, sd̂2) with d̂1 = (−0.0505,

0.9570,−0.2856)T , d̂2 = (−0.0196,−0.9331,−0.3590)T , and s = 1. Part (c) shows the

system configuration at the squeeze depth ρ = 0.013. The contact region (lower left)

with F1 consists of four triangles, while the contact region (lower right) with the plane



www.manaraa.com

40

Figure 5.4 Sphere in three configurations.

(a) free; (b) resting on a horizontal plane; (c) after a squeeze by two hemispherical
fingertips.

P consists of five.

The fingers then move straight upward to pick up the sphere. Figure 5.5 shows the

configuration after the sphere breaks contact with the plane.

F1 F2

Figure 5.5 The sphere carried above the plane.
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CHAPTER 6. DISCUSSION AND FUTURE WORK

In this thesis we first introduce two types of squeezes on a deformable object. A stable

squeeze minimizes the potential energy for the same amount of squeeze by moving the two

fingers toward each other. A pure squeeze ensures that the grasped object undergoes no

rigid body motion as it deforms to eliminate unnecessary finger movements. It prevents

large rotations that cannot be described under linear elasticity, on which our analysis is

based.

Next we look at the best strategy to resist an adversary finger pushing against a

grasped object via translation. Our introduced metric is the amount of work performed

by the grasping fingers, rather than the total force they exert as frequently used in rigid

body grasping. Optimal resistance strategies are first analyzed assuming fixed point and

segment contacts. Then, Algorithm 1 is offered for area contacts under Coulomb friction,

by incorporating the contact event detection subroutine from (3).

We also propose a simple squeeze-and-lift strategy for grasping 3D deformable objects.

The idea is to model changes in shape and contact geometry during the deformation,

and repeatedly conduct lift tests to predict when to switch the action from squeezing

to lifting. To support the modeling, we have extended our contact-based finite element

analysis to 3D, with gravity taken into account. Contact slips are handled via root

finding of quadratic systems derived under Coulombs friction law and linear elasticity.

Further investigation and experimental validation need to be conducted for the intro-

duced grasp quality measures. More understanding is needed for the stability of grasping

in the presence of a disturbance, especially the grasped objects ability to absorb the dis-
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turbance into its strain energy. Such absorption is expected to be more prominent with

large deformations, to which the nonlinear elasticity theory needs to be applied.

The algorithm for picking up 3D deformable objects needs more extensively simu-

lation on various objects and experimental validation using a robot hand. We would

like to improve on the outcome prediction by the lift test without sacrificing its current

efficiency. This is directly linked to a good accuracy in the prediction of the final fin-

ger contact regions. And also more understanding is needed about several factors that

contribute to a successful pickup: global shape, geometry of contact regions, normal vs.

tangential contact forces in balancing the objects weight, etc.

Comparing rigid body grasping and deformable body grasping, optimizing finger

placements and squeezing directions, turning the operation into a reactive one by incor-

porating tactile data in the modeling for reliable slip detection/prediction are also some

interesting and important future directions.
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